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A method is proposed for numerical calculation of complex systems of partial and 
ordinary differential equations, based on the use of the integral Laplace and 
Fourier transform. 

The efficiency with which certain industrial installations are used is determined by 
stability requirements and operational characteristics within very strict limits independent 
of the conditions of use [i, 2]. In this case, the most difficult aspect to realize is the 
maintenance of a strict temperature regime (within the limits of tenths of a degree) with 
constantly changingvariables during the time that heat loads are applied. In order to ful- 
fill this requirement, it is necessary to create complicated heat-engineering systems that 
consist of a large number of various kinds of elements, which, in its turn, has led to the 
development of mathematical models and techniques for their realization, allowing for a quite 
precise calculation of the parameters of these systems not only in stationary but also in 
dynamic regimes of operation. 

Mathematical models in this case consist of complicated systems of nonlinear and linear, 
partial and ordinary differential equations, describing the functional dependence of the 
variables on two and more parameters. Solving such systems with the help of traditional 
analytic methods, which allow in principal for solving the problem or reducing it to one 
solved earlier, is practically impossible. Realization of similar models with the help of 
numerical methods gives good results in calculating a specific version of a given scheme 
of a heat-engineering system, but encounter serious difficulties in carrying out the analy- 
sis and synthesis due to the limited size of the memory and operational speed of modern 
computers. 

For this reason, in solving the problems of analysis and especially synthesis, it is 
most useful to use a method based on the use of integral Laplace and Fourier transforms, 
combining in an optimal manner the possibilities of analytical and numerical studies of 
complex systems. We will illustrate the essence of the method with an example of a heat- 
engineering system (Fig. I), the mathematical model for which consists of the following 
system of equations: 

heat-exchange equation for the object being controlled 

aTe(x, ,,r) + V, aT,____(x, ~) =ki[Ti~(x, g, ~)--T,(x, "~)]; (1) 
a~ ax 

OTt3(x, Y, ,'r) a~T~s (x, y,  :r) 
cl t a~ ay 2 

heat-transfer equation in the main ducts 

ori (x, ~) + Vd,i OT, (x, ~) 
a~ ax 

dTw ,~ (x, X) 
d* 

+ k2 [T~  (~) - -  T~  (x, g, "0] + k~ [q~ (~) - -  sooT]~ (x, y, ~r)] ; 

= kd,~ [Tw.,~ (x, ~) - -  T, (x, , )]  ; 

---- kw,i  [T+ (x, T) - -  Tw,+ (x, ~)], 

(2) 

(3) 

(4) 

where i=l, 2,...,n is the number of ducts; 
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I F/~ ~z Control circuit L_ 

Fig. I. Functional diagram of a heat-engineering 
system: IB) instrument block; LFR) liquid flow 
regulator; GLHE, LLHE) gas--liquid and liquid--liquid 
heat exchangers. 

equations for the elements of the regulator circuits 

dU (T) -__ h e  Tt (0, ~) - -  - - ! _  U (x) ; 
d~ Tse Tse 

d~(1:) = k.dr U(z) ;  
dr  Tdr 

= klfr (, ) ; 
heat-exchange equation in the liquid--liguid heat exchanger 

d,~ 

dT, (~) 

d'~ 

dq2 (x) = 1% - -  
d~ 

- -  = k~ lTa (x) - -  T4 (x)l - -  k~q~ (x) ; 

- -  = ~eq~ (~) - -  ~7 Iv9 (~) - -  T,  (~)l ; 

dT., ('0 Ir dTs (x) kio d6~ ('~) ; 
d~ d'r d'c 

(5) 

(6) 

(7) 

(8) 

(9) 

(io) 

equation for the mixer 

T.~ ('0 = Ta ('~) 
O, (T) 

6~ 
IT3 (~) -- T~ (x)l; (11) 

heat-exchange equation in the instrument block 

dr ,o (~ )  = kit i T .  (,~) -- T,o (x)l + knqs (~) ; 
dr 

(12) 

heat-exchange equation in the gas--liquid heat exchanger 

dTil (~) = kls [Tio (~) -- Til (~)l -- ki~q,.Cz). 
d~ 

tiT7 (~) = kisq~ (~) -- kl. [/'7 (~) -- Te (,T)I; 
dr 

dqt (~) = kn dTlo (~) km dT, (~) 
d~ d~ d~ 

(13) 

(14) 

(15) 

with the corresponding boundary conditions, characteristic for closed control systems. 

In accordance with the method being proposed, the starting system of equations (i)- 
(15) is linearized relative to the stationary regime with respect to a small parameter and 
written in the Laplace representation. 
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I Re[W~'~(~o~)]ilm [Wm,,(o~) ] 
/ and det4rmination of the cut- 
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III. Cale. of the transfer char- 
acteristies 

/'/n (T) =~2--i kR8 [~'n(~~ S[ nc~176 l 

L 

,Input of I,_4Fo on , ] _ ~ . . ~  ~;Kn Ip ur a- ) 
Itions, Qm I Ibloek O~,(tco)l I o j' I ,~o,~, 

F ig .  2. Block diagram of the program fo r  ca l -  
cu la t i ng  the parameters of a heat-engineering 
system. 

ilia. Formation of the data 
] block 

I 

In the representation for elements with distributed parameters, we seek a solution 
relative to the spatial coordinates, and then the system is represented in the complex plane 
by replacing the operator p by i~. As a result of the separation of the real and imaginary 
parts of the equations describing the reaction of the heat-engineering system being con- 
sidered to a specific perturbation, in the complex plane, we obtain algebraic equations of 
the following form: 

Re [Q~ (co)l = ~ {Re [Wren (~)] Re [Qm (to)] _Im [Wmn (~)] Im [Qm (m)]} ; (16) 
m=l 

k 

Im [Qn (m)] ----- ~ {Ira [Wren (~)] Re [Qm (m)] + Re [Wren (m)] Im [Qm (~)]} , (17) 
m=l 

where Qn and Qm are the parameter being determined and the determining parameter; Wmn is 
the transfer function corresponding to the perturbation. 

These equations are easily solved with the help of a computer with a minimum amount of 
machine time in comparison with the expenditures of machine time necessary for solving the 
starting system of equations (1)-(15). 

The problem of determining the values of the parameters necessary to carry out the 
analysis and synthesis of the heat-engineering system being considered with the help of the 
algebraic equations (16)-(17) in accordance with the block diagram shown in Fig. 2 is 
solved in two stages. In the first stage, we determine the values of the real and imaginary 
parts of the transfer function of the open system, which are then used to study the stabil- 
ity of the system, the values of the cut-off frequencies, the real and imaginary parts of 
the transfer function of the closed system, and also its amplitude and phase frequency 
characteristics. At the second stage, the values of the transfer process control parameter 
are determined according to the values of the real or imaginary parts of the transfer func- 
tion of the closed system by calculating the corresponding integral relation. 
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Therefore, as a result of solving Eqs. (16)-(17), with minimum expenditures of machine 
time it is possible to obtain the values of all the parameters necessary for carrying out 
the analysis and synthesis of the system being investigated. 

Thus, from the example examined above, ~t follows that the proposed method significantly 
simplifies the problem ofrealizing the complex mathematical models and can be effectively 
used for studying quite complex heat-engineering systems. In addition, the proposed method 
can be successfully used for developing methods and systems for automated system design that 
provide heat regimes for various purposes. 

NOTATION 

T, temperature; V, rate of motion of the heat-exchange agent; kl =uIN1/clplgS:; ul, 
heat-transfer coefficient; H~, perimeter of the heat-exchange agent channel; ci, specific 
heat capacity of the heat-exchange agent; 0~, density; g, acceleration due to gravity; S~, 
area of the transverse cross section of the heat-exchange agent channel; x and y, spatial 
coordinates; T, time; a~, thermal diffusivity; k2 = ~/c2p2gr; v, relative insulation area; 
c2, specific heat capacity of the wal!~ P2, density of the wall; r, thermal resistance of 
the insulation; k3 =(l-v)/c2p2g; q, specific heat flux; c, emissivity; 0o, Stefan-Boltzmann 
constant; kd, i =(~1~)d, i/(c~p~gS~)d, i; kw, i =(~1)d,i/~c2p2gP)w, i; Fw, i, area of tlm 
transverse cross section of the duct wall; kse , coefficient of amplification of the sensing 
element; Tse , time constant for the sensing element~ U, voltage; k:r , drive amplification 
coefficient; Tdr, drive time constant; klfr, coefficient fo~ amplification of the liquid flo~ 
regulator; G, weight flow rate of the heat-transfer agent; ~, relative deviation of the reg- 
ulator; ks =(dq2/dT3)o; k9 = (dq2/dTs)o; klo =(dq2/dG~)o, coefficient of sensitivity for liq- 
uid-liquid heat exchanger according to the input parameters; k4 =k7 =k1~ =k~3 =k~6 =I/~o,j; 
To,j, time spent by the heat-transfer agent in the j-th element; k~ =ke =k~2 =k~ =kls =I/c~" 
gmj; mj, mass of the heat-transfer agent in the j-th element; k17 = (dq4/dT1o)o; k:s L (dq4/ 
dT6)o, coefficient of sensitivity of the gas-liquid heat-exchange agent according to the input 
parameters) W, transfer function. The indices are as follow: d, ducts; w, walls, se, sensing 
elements; dr, drive; ifr, liquid flow regulator. 
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